1,812 research outputs found

    Leading Naked: The Costly Consequences of Organizational Solipsism

    Get PDF

    A Venture Capital Fund for Undergraduate Engineering Students at Rowan University

    Get PDF
    All engineering students at Rowan University are required to take the 8-semester Engineering Clinic sequence wherein multidisciplinary student teams engage in semester-long design projects. In addition to projects that are funded by local industry, faculty research grants or departmental budgets, a Venture Capital Fund has been created, which is specifically ear-marked for the development of original student inventions. Funding of up to $2500 per student team per semester is competitively awarded based on student-generated proposals to the Venture Capital Fund, which has been created through a series of grants from the National Collegiate Inventors and Innovators Alliance (NCIIA). To qualify for funding, a multidisciplinary student team must propose, plan and implement an original, semester-long product development enterprise. To date, eleven projects have been funded through the Venture Capital Fund. This paper describes the results of several student entrepreneurial projects and compares the results of student surveys to assess the effectiveness of entrepreneurial projects in satisfying the technical objectives of the Engineering Clinic. The results suggest that students engaged in entrepreneurial projects devote more hours per week on their projects, have more “ownership” in their projects, and have a better understanding of the technical aspects and societal impact of their projects than their counterparts who are engaged in the more traditional engineering design projects

    Theoretical Basis for Estimated Test Times and Conditions for Drop Tower and Space-Based Droplet Burning Experiments With Methanol and N-Heptane

    Get PDF
    In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter

    Creating an Entrepreneurial Culture at a Startup Engineering Program

    Get PDF
    In 1992, the College of Engineering at Rowan University was created as the direct result of a 100milliongiftfromentrepreneurHenryM.Rowan.Mr.Rowan’srequirementswerethatthegiftbeusedtocreateahigh−quality,publicundergraduateengineeringinstitutionandtoimpacttheeconomicdevelopmentofsouthernNewJersey,aregionwhichhashistoricallylaggedbehindnorthernNewJersey.HavingstartedwithacleancurriculumslateduringaperiodofnationalchangeinengineeringcurriculainresponsetoABET2000,wehadtheopportunitytoinfuseanentrepreneurialcultureintoourengineeringprogramfromitsinception.Specifically,wehavedevelopedthefollowingpolicies/programs:‱Createdan8−semesterEngineeringCliniccoursesequenceinwhichhands−ondesignprojectsarecompletedeverysemester.‱Developeda“job−fair”modelforstudentclinicprojectstaffinginwhichstudentsget“hired”intotheirEngineeringClinicprojectsbymarketingthemselvesandtheircapabilitiestofaculty,‱CreatedanUndergraduateVentureCapitalFundwherestudentscanobtainfundingupto100 million gift from entrepreneur Henry M. Rowan. Mr. Rowan’s requirements were that the gift be used to create a high-quality, public undergraduate engineering institution and to impact the economic development of southern New Jersey, a region which has historically lagged behind northern New Jersey. Having started with a clean curriculum slate during a period of national change in engineering curricula in response to ABET 2000, we had the opportunity to infuse an entrepreneurial culture into our engineering program from its inception. Specifically, we have developed the following policies/programs: ‱ Created an 8-semester Engineering Clinic course sequence in which hands-on design projects are completed every semester. ‱ Developed a “job-fair” model for student clinic project staffing in which students get “hired” into their Engineering Clinic projects by marketing themselves and their capabilities to faculty, ‱ Created an Undergraduate Venture Capital Fund where students can obtain funding up to 2500 per semester to develop their own original inventions, ‱ Created the Competitive Assessment Laboratory for competitive benchmarking of consumer products. ‱ Developed a micro-business model in which some Engineering Clinic project teams provide engineering services (design, fabrication, modeling, etc.) to other projects, ‱ Hired (College of Business) an endowed chair in entrepreneurial studies, ‱ Created the Technological Entrepreneurship Concentration, which is a certificate program that will be populated jointly by Engineering and Business students, ‱ Obtained state funding to build the South Jersey Technology Park and Technology Business Incubator adjacent to the Rowan campus. This paper will describe the impact of each of these initiatives toward creating an entrepreneurial culture in our undergraduate students. It should be noted that many of these initiatives do not require a new program or major curriculum reform. Rather, our results suggest that it is possible to start with some small initiatives and build upon each initiative as the momentum for entrepreneurship develops

    Integrating Design Throughout The Mechanical Engineering Curriculum: A Focus On The Engineering Clinics

    Get PDF
    At Rowan University, we have infused design into the curriculum through an eight-semester course sequence called the Engineering Clinic. Through this experience students learn the art and science of design in a multidisciplinary team environment. While many engineering programs currently include a Capstone Design course taken near the end of the college career to meet the design needs, Engineering Clinic at Rowan allows students to hone their design skills throughout their four-year career. This paper will describe in further detail the objectives and execution of each year in the design sequence, types of projects and how the Clinics complement traditional core courses in the curriculum. Impacts and benefits of the Clinics on students and faculty are discussed, as well as comparative data of Rowan Mechanical Engineering students and their peers nationally

    The CatWISE2020 Catalog

    Get PDF
    The CatWISE2020 Catalog consists of 1,890,715,640 sources over the entire sky selected from WISE and NEOWISE survey data at 3.4 and 4.6 ÎŒ\mum (W1 and W2) collected from 2010 Jan. 7 to 2018 Dec. 13. This dataset adds two years to that used for the CatWISE Preliminary Catalog (Eisenhardt et al., 2020), bringing the total to six times as many exposures spanning over sixteen times as large a time baseline as the AllWISE catalog. The other major change from the CatWISE Preliminary Catalog is that the detection list for the CatWISE2020 Catalog was generated using crowdsource{\it crowdsource} (Schlafly et al. 2019), while the CatWISE Preliminary Catalog used the detection software used for AllWISE. These two factors result in roughly twice as many sources in the CatWISE2020 Catalog. The scatter with respect to Spitzer{\it Spitzer} photometry at faint magnitudes in the COSMOS field, which is out of the Galactic plane and at low ecliptic latitude (corresponding to lower WISE coverage depth) is similar to that for the CatWISE Preliminary Catalog. The 90% completeness depth for the CatWISE2020 Catalog is at W1=17.7 mag and W2=17.5 mag, 1.7 mag deeper than in the CatWISE Preliminary Catalog. From comparison to Gaia{\it Gaia}, CatWISE2020 motions are accurate at the 20 mas yr−1^{-1} level for W1∌\sim15 mag sources, and at the ∌100\sim100 mas yr−1^{-1} level for W1∌\sim17 mag sources. This level of precision represents a 12×\times improvement over AllWISE. The CatWISE catalogs are available in the WISE/NEOWISE Enhanced and Contributed Products area of the NASA/IPAC Infrared Science Archive.Comment: 27 pages, 24 figure, 2 tables. Accepted for publication in ApJS. arXiv admin note: text overlap with arXiv:1908.0890

    The CatWISE Preliminary Catalog: Motions from WISE{\it WISE} and NEOWISE{\it NEOWISE} Data

    Full text link
    CatWISE is a program to catalog sources selected from combined WISE{\it WISE} and NEOWISE{\it NEOWISE} all-sky survey data at 3.4 and 4.6 ÎŒ\mum (W1 and W2). The CatWISE Preliminary Catalog consists of 900,849,014 sources measured in data collected from 2010 to 2016. This dataset represents four times as many exposures and spans over ten times as large a time baseline as that used for the AllWISE Catalog. CatWISE adapts AllWISE software to measure the sources in coadded images created from six-month subsets of these data, each representing one coverage of the inertial sky, or epoch. The catalog includes the measured motion of sources in 8 epochs over the 6.5 year span of the data. From comparison to Spitzer{\it Spitzer}, the SNR=5 limits in magnitudes in the Vega system are W1=17.67 and W2=16.47, compared to W1=16.96 and W2=16.02 for AllWISE. From comparison to Gaia{\it Gaia}, CatWISE positions have typical accuracies of 50 mas for stars at W1=10 mag and 275 mas for stars at W1=15.5 mag. Proper motions have typical accuracies of 10 mas yr−1^{-1} and 30 mas yr−1^{-1} for stars with these brightnesses, an order of magnitude better than from AllWISE. The catalog is available in the WISE/NEOWISE Enhanced and Contributed Products area of the NASA/IPAC Infrared Science Archive.Comment: 53 pages, 20 figures, 5 tables. Accepted by ApJ

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    • 

    corecore